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Abstract. The Hypervirial Theorems are applied to a wide class of single particle nuclear potentials, in
order to study the mass number dependence of various quantities in Λ−hypernuclei. A very efficient model
is assumed for the radius parameter of the potentials and the limitations of the whole method are discussed.

PACS. 21.80.+a Hypernuclei – 13.75.Ev Hyperon-nucleon interactions – 21.10.Dr Binding energies and
masses

1 Introduction

Over the past years a variety of methods has been used for
the determination of the Λ−hyperon binding energies in
hypernuclei, ranging from that of nuclear emulsions to the
strangeness exchange reaction [1–3] up to the more recent
associated production reaction [4–8]. Those experiments
have yielded a multitude of experimental results which
allow for a better description of the mass number depen-
dence of the Λ−binding energies. Moreover, this wealth of
data provides a solid foundation of an analytical approach
of Λ−hypernuclei. Various single particle potentials have
been used in the past in order to approximate the self-
cosistent potenial in a Λ -hypenucleus [9–14], while their
parameters have been studied systematically by means of
the associated production reaction (π+,K−) . The results
indicate that the depth of the potential can be safely re-
garded as mass number independent (except for very light
nuclei) with a value close to 30MeV [14–18]. However, it
turns out that mass number dependence has to be taken
seriously into account for a nuclear potential to reproduce
the experimental data satisfactorily. With data available
on the spacing of single particle levels in a given hyper-
nuclei, one can also determine the functional dependence
of the radius parameter on the mass number, thus con-
structing a very efficient potential model.

In addition, in a recent work, the Hypervirial Theo-
rems (HVT) were applied to a wide class of single patricle
nuclear potentials yielding various valuable approximate
quantities [19–22]. Hence, by incorporating a mass num-
ber dependent radius parameter in that work a thorough
study of Λ−hypernuclei can be accomplished.
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2 Application of the hypervirial theorems to
single particle nuclear potentials

A wide class of potentials used in Nuclear Physics is :

V (r) = −Df(
r

R
) 0 ≤ r <∞ (1)

where D is the potential depth, R = r0A
1
3 the potential

radius, r0 the radius parameter and A the mass number
of the nucleus. The ”potential form factor” f, (f(0) = 1),
is an even analytic function of x = r

R . Namely,

f(x) =
∞∑
k=0

dkx
2k (2)

where dk are the numbers:

dk =
1

(2k)!
d2k

dx2k
f(x) |x=0 k = 0, 1, 2, ... d1 < 0 (3)

The corresponding Schroedinger eigenvalue problem is:[
d2

dx2
− l(l + 1)

x2
+ s−2f (x) +

∼
Enl

]
unl (x) = 0

unl (0) = 0 unl (∞) = 0 (4)

where, x = r
R , s =

(
h̄2

2µDR2

) 1
2

and
∼
Enl= s−2Enl

D

An application of the hypervirial theorems to(4)
yielded fairly accurate series for the corresponding en-
ergy eigenvalues Enl, the potential < V >nl and the ki-
netic energy < T >nl and the mean-square radius (MSR)
< r2 >nl. By observing [22] that those quantities are ac-
tually exclusive function of the parameter s one can write
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those series in the form:

Enl = D
∞∑
k=0

e
(k)
nl s

k,

< V >nl = D

∞∑
k=0

v
(k)
nl s

k, (5)

< T >nl = D
∞∑
k=0

t
(k)
nl s

k

< r2 >nl= R2
∞∑
k=0

r
(k)
nl s

k (6)

where

t
(k)
nl =

(
1 + k

2

)
e

(k)
nl , v

(k)
nl =

(
1− k

2

)
e

(k)
nl (7)

The first significant coefficients e(k)
nl are :

e
(0)
nl = −1,

e
(1)
nl = 2anl (−d1)

1
2 ,

e
(2)
nl =

d2

8d1

[
12a2

nl − 4l(l + 1) + 3
]

e
(3)
nl = −anl(−d1)

1
2

32d3
1

{
4a2
nl

(
20d1d3 − 17d2

2

)
+ 4d1d3[25− 12l(l + 1)] + d2

2[36l(l + 1)− 67]
}

(8)

Likewise, the corresponding first significant coefficients
for the MSR are:

r
(0)
nl = 0

r
(1)
nl =

anl

(−d1)
1
2

r
(2)
nl =

d2

8d2
1

[
12a2

nl − 4l(l + 1) + 3
]

r
(3)
nl = −anl(−d1)

1
2

64d4
1

{
20a2

nl

(
12d1d3 − 17d2

2

)
+ 12d1d3[25− 12l(l + 1)] + 5d2

2[36l(l + 1)− 67]
}

(9)

3 Derivation of a general formula for mass
number dependent quantities

Potentials of the form (1) have been used extensively in
Hypernuclear Physics with very satisfactory results. Nev-
ertheless , mass number dependence has to be assumed for
the radius parameter r0 as well, for a reliable reproduction
of the experimental results, that is:

R = r0 (A)A
1
3 (10)

where A the mass number of the core nucleus , assum-
ing the rigid core model. Such an assumption effectively
implies that the volume each nucleon occupies

(
4
3πr

3
0

)
as

well as the mean interparticle distance (2r0) are functions
of A , too. According to some very thorough studies in
the field of hypernuclei the experimental results can be
fitted much better by a single particle potential if the ra-
dius parameter r0 is assumed to have the following form
[9,11]:

r0 =
(
r1 + r2A

− 2
3

)
(11)

On the basis of this assumption a member of the poten-
tial class(1) was employed to study the functional depen-
dence of binding energies, kinetic and potential energies in
Λ−hypernuclei [11]. That study can now be generalised,
by means of the HVT, for the entire class (1), including
the study of the MSR.

The parameter s appearing in the previous section can
now be written :

s = sΛ

√
1 + gA−1

A
1
3

(
1 + bA−

2
3

) , (12)

where the new parameters introduced are:

sΛ =

√
h̄2

2mΛDr2
0

, b =
r2

r1
, g =

mΛ

mN
(13)

mN ,mΛ are the masses of the nucleon and of the Λ−
particle respectively.

By expanding s in terms of A−
1
3 and dropping terms

of order higher than A−1 the following approximation is
arrived at:

s ' sΛ
(
A−

1
3 − bA−1

)
(14)

Consequently the expectation value of a quantity Q,
using the HVT formalism, takes the approximate form:

< Q >nl=
∞∑
k=0

q
(k)
nl s

k '
∞∑
k=0

q
(k)
nl s

k
Λ

(
A−

1
3 − bA−1

)k
(15)

Neglecting higher terms , the above approximation is
finally written as follows:

< Q >nl ' q
(0)
nl + 2s0q

(1)
nl A

− 1
3 + 4s2

0q
(3)
nl A

− 2
3

+
(

8s3
0q

(3)
nl − 2bs0q

(1)
nl

)
A−1 (16)

where s0 = sΛ
2

By replacing q(k)
nl in the above expression with the cor-

responding coefficients e(k)
nl , v(k)

nl , t
(k)
nl , r(k)

nl , the mass num-
ber dependence of Enl, < V >nl, < T >nl, and < r2 >nl
assumes a very enlightening quantitative form for each
state.

As g vanishes in the present approximation , for b = 0
formula (16) corresponds to the conventional model intro-
duced by the nuclear radius R = r0A

1
3 .
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At this venture some comments regarding the MSR
are deemed necessary as the importance of the A depen-
dence of the energy quantities is obvious, anyway. Al-
though there are no experimental data for the MSR of
a Λ− particle,its usefullness becomes apparent in the cal-
culation of the oscillator level spacing according to the
approximate formula:

h̄ωΛ =
3
2
h̄2

µ
< r2 >−1

00 (17)

A thorough study of the validity of the above formula
was undertaken [13] using the reduced Poeschl-Teller po-
tential which behaves very much alike the Gaussian one ,
with some extra analytic features.

Moreover, the oscillator spacing can be used in the
calculation of the relative probability of the recoiless
Λ−production using the Debye-Waller factor [14]:

P (ni, ni) ' exp
[− (2ni + 1) h̄2q2

2mΛh̄ωΛ

]
(18)

where ni is the quantum number of the harmonic oscillator
state and h̄q the Λ−recoil momentum.

For the potential model used in [13,14] the calculation
of h̄ωΛ as a function of A was easy and performed in a
straightforward way. In general, however, one has to resort
to a special treatment of potentials (1) , such as that of
the HVT which yields (6) .

Hence, an assessment of (6) with respect to exist-
ing experimental data can only be accomplished indi-
rectly , through the oscillator spacing and only for the
ground state. Alternatively, a numerical integration of the
Schroedinger (4) can also provide a measure of its accuarcy
[19–21]. The orbital radius of a Λ−particle, taken as the
root mean square radius RMSR =

√
< r >2

nl, can now be
written as a fraction of the potential radius:

√
< r >2

nl = F (A)R, F (A) =

√√√√ ∞∑
k=0

r
(k)
nl s

k < 1 (19)

4 Implementation of of the derived formulae
and their limitations

Two typical members of (1) are the Gaussian potential :

V (r) = −De− r2

R2 (20)

for which

dk =
(−1)k

k!
(21)

and the (reduced) Poeschl-Teller potential

V (r) = −D cosh−2 (r/R) . (22)

As for the Gaussian potential the previous formalism
is readily applied to it to obtain the mass number depen-
dence of the binding energies :

E1s = −D
[
1− 6s0A

− 1
3 +

15
2
s2

0A
− 2

3

+
(

25
8
s3

0 + 6bs0

)
A−1

]
(23)

E1p = −D
[
1− 10s0A

− 1
3 +

35
2
s2

0A
− 2

3

+
(

105
8
s3

0 + 10bs0

)
A−1

]
(24)

E1d = −D
[
1− 14s0A

− 1
3 +

63
2
s2

0A
− 2

3

+
(

273
8
s3

0 + 14bs0

)
A−1

]
(25)

E2s = −D
[
1− 14s0A

− 1
3 +

75
2
s2

0A
− 2

3

+
(

315
8
s3

0 + 14bs0

)
A−1

]
(26)

Similarly one obtains the potential and kinetic energy
mass number dependence:

V1s = −D
[
1− 3s0A

− 1
3

−
(

25
16
s3

0 − 3bs0

)
A−1

]
(27)

V1p = −D
[
1− 5s0A

− 1
3

−
(

105
16

s3
0 − 5bs0

)
A−1

]
(28)

T1s = D

[
3s0A

− 1
3 − 15

2
s0A

− 2
3

−
(

75
16
s3

0 + 3bs0

)
A−1

]
(29)

T1p = D

[
5s0A

− 1
3 − 35

2
s0A

− 2
3

−
(

375
16

s3
0 + 5bs0

)
A−1

]
(30)

The above relations are identical to the ones obtained
in a thorough study [11] of the applicability of (20) to
Λ−hypernuclei assuming the mass number dependence for
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Fig. 1. The binding energies for various Λ− particle states
obtained with the present formalism and the corresponding

experimental data plotted with respect to A−
2
3

the radius parameter given by (11) . In that work the va-
lidity of (11) was firmly established by the substantial
agreement between the numerical values of the analytic
expressions and the corresponding experimental data.

The present approach can also provide the MSR for
various states:

< r2 >1s = R2

[
3s0A

− 1
3 +

405
32

s2
0A
− 2

3

+
3
(
135s3

0 − 16bs0

)
16

A−1

]
(31)

< r2 >1p = R2

[
5s0A

− 1
3 +

1365
32

s2
0A
− 2

3

+
5
(
273s3

0 − 16bs0

)
16

A−1

]
(32)

Similar epressions can be produced for potential (22) , by
means of (16).

In Fig. 1, Fig. 2 and Fig. 3 , the binding energies of
a Λ−hyperon and the corresponding potential and kinetic
energies are plotted with respect to A−

2
3 . Available ex-

perimental data [8] are also shown in Fig. 1. The fitting
parameters for the Gaussian potential obtained are [11]
D = 32.45MeV, r1 = 1.438, r2 = −1.118

In Fig. 4, (10), (31), (32) (and the corresponding
< r2 >1d) are used in order to plot the potential radius R
and the orbital radius of a Λ−hyperon, for various eigen-
states, against A

1
3 . That figure is in accordance with the

argument that ”the distinguishable Λ−particle provides
one of the best examples of single particle shell structure
in nuclear physics” [9].

Fig. 2. The potential energies for various Λ− particle states
obtained with the present formalism plotted with respect to

A−
2
3

Fig. 3. The kinetic energies for various Λ− particle states
obtained with the present formalism plotted with respect to

A−
2
3

The method of the HVT introduces limitations to the
present formalism from the very beginning. A solid crite-
rion for the practicality of the method is the magnitude of
the parameter s. Apparently the truncated series (16) is
accurate enough only if s is sufficiently small which is akin
to the potential being deep and wide. In addition , previ-
ous studies have shown that the method works better for
the deeply bound states of relatively heavy nuclei [19–21].
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Fig. 4. The orbital radii (RMSR) for various Λ− particle eigen-

states with respect to A
1
3 . The solid curve represents the po-

tential radius R = r0 (A)A
1
3

Therefore in Fig. 4 the reliable region is that lying lower
than the potential radius as the more the discontinuous
curves approach the solid line from the right, the more
loosely bound the particle becomes.

An equally important limitation is due to the poten-
tials (1) being two-parameter ones and therefore unable to
take into account some surface effects a three-parameter
potential such as the Woods-Saxon one would. That in-
herent inadequacy renders such potentials unsuitable for
the description of very heavy nuclei. On the other hand,
for vey light systems the depth parameter should have also
been assumed mass number dependent.

Consequently, for (23) to (32), a safe validity range of
hypernuclei is :20 < A < 120, whereas, for the loosely
bound states, their accuracy could be slightly improved
by including a higher term (e.g. of order A−

4
3 ).

Finally, it should be underlined that nothing prevents
the present formalism from being applied to nucleon-

nucleus interactions, possibly assuming a different model
for the radius parameter according to experimental data.

The author would like to thank M. Grypeos, C.Daskalogiannis,
S.Massen and G.Lalazissis for useful comments and discussion.
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